



# ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025

**Swift Nesting Brick**  
Manthorpe Building Products



**EPD HUB, HUB-4674**

Published on 12.12.2025, last updated on 12.12.2025, valid until 11.12.2030

Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.

## GENERAL INFORMATION

### MANUFACTURER

|                 |                                                                               |
|-----------------|-------------------------------------------------------------------------------|
| Manufacturer    | Manthorpe Building Products                                                   |
| Address         | Manthorpe House, Brittain Dr, Codnor Gate, Ripley, Ripley, GB, United Kingdom |
| Contact details | mbp.care@manthorpebp.co.uk                                                    |
| Website         | www.manthorpebp.co.uk                                                         |

### EPD STANDARDS, SCOPE AND VERIFICATION

|                    |                                                                                                                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program operator   | EPD Hub, hub@epdhub.com                                                                                                                                                            |
| Reference standard | EN 15804:2012+A2:2019/AC:2021 and ISO 14025                                                                                                                                        |
| PCR                | EPD Hub Core PCR Version 1.2, 24 Mar 2025                                                                                                                                          |
| Sector             | Construction product                                                                                                                                                               |
| Category of EPD    | Third party verified EPD                                                                                                                                                           |
| Parent EPD number  | -                                                                                                                                                                                  |
| Scope of the EPD   | Cradle to gate with options, A4-A5, and modules C1-C4, D                                                                                                                           |
| EPD author         | Ben Hales, Manthorpe Building Products                                                                                                                                             |
| EPD verification   | Independent verification of this EPD and data, according to ISO 14025:<br><input type="checkbox"/> Internal verification <input checked="" type="checkbox"/> External verification |
| EPD verifier       | Dusan Vukovic, as authorized verifier acting for EPD HUB Limited                                                                                                                   |

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products

may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

### PRODUCT

|                                       |                          |
|---------------------------------------|--------------------------|
| Product name                          | Dual Swift Nesting Brick |
| Additional labels                     | GSWB / GSWB-DUAL-RD      |
| Product reference                     | GSWB-DUAL                |
| Place(s) of raw material origin       | United Kingdom           |
| Place of production                   | United Kingdom           |
| Place(s) of installation and use      | United Kingdom           |
| Period for data                       | 01/01/2024 - 31/12/2024  |
| Averaging in EPD                      | No grouping              |
| Variation in GWP-fossil for A1-A3 (%) | N/A                      |
| GTIN (Global Trade Item Number)       | 5053062207912            |
| A1-A3 Specific data (%)               | 5.02                     |

**ENVIRONMENTAL DATA SUMMARY**

|                                                  |                       |
|--------------------------------------------------|-----------------------|
| <b>Declared unit</b>                             | 1 Swift Nesting Brick |
| <b>Declared unit mass</b>                        | 0.632 kg              |
| <b>Mass of packaging</b>                         | 0.254 kg              |
| <b>GWP-fossil, A1-A3 (kgCO<sub>2</sub>e)</b>     | 0.607                 |
| <b>GWP-total, A1-A3 (kgCO<sub>2</sub>e)</b>      | 0.256                 |
| <b>Secondary material, inputs (%)</b>            | 76.1                  |
| <b>Secondary material, outputs (%)</b>           | 26.7                  |
| <b>Total energy use, A1-A3 (kWh)</b>             | -1.82                 |
| <b>Net freshwater use, A1-A3 (m<sup>3</sup>)</b> | 0.01                  |

# PRODUCT AND MANUFACTURER

## ABOUT THE MANUFACTURER

Manthorpe has been developing innovative building products for the construction industry since 1986. Our comprehensive range of quality building products is designed to meet your every need, from the groundwork to roofline and from new build to refurb.

With extensive experience in the plastics industry, we have the expertise to manufacture virtually all our building products in-house and continue to invest heavily in new technology, cutting-edge machinery and production processes. This enables our team to be at the forefront of product development, driving industry progress through precision and innovation.

## PRODUCT DESCRIPTION

As modern building practices have greatly improved the quality of new homes, some have suffered from the advances in building regulations. Bird species such as swifts have occupied the cracks and crevices in our buildings for thousands of years, but the improved standard and style of modern construction has put their survival in our towns and cities at risk. These popular birds come to the UK for three months during the summer to raise their young preferring to nest in small groups, but the population has been dwindling for many years as suitable nest sites have become scarcer.

The Manthorpe **Dual Swift Brick** has been developed in conjunction with major house builders and conservation experts to improve the biodiversity of the built environment, providing a safe, spacious and habitable area to allow swifts to nest within the construction of modern houses. The compact design of the Dual Swift Brick allows it to work with narrower cavity wall details down to 50mm, making it ideal for modern timber frame constructions. Additionally, the twin brick profile can be easily retrofitted into existing walls with a minimum 50mm cavity.

## PRODUCT RAW MATERIAL MAIN COMPOSITION

| Raw material category | Amount, mass % | Material origin |
|-----------------------|----------------|-----------------|
| Metals                | -              | -               |
| Minerals              | 2.2            | EU              |
| Fossil materials      | 97.8           | EU              |
| Bio-based materials   | -              | -               |

## BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

|                                            |     |
|--------------------------------------------|-----|
| Biogenic carbon content in product, kg C   | -   |
| Biogenic carbon content in packaging, kg C | 0.1 |

## FUNCTIONAL UNIT AND SERVICE LIFE

|                        |                       |
|------------------------|-----------------------|
| Declared unit          | 1 Swift Nesting Brick |
| Mass per declared unit | 0.632 kg              |
| Functional unit        | -                     |
| Reference service life | In excess of 40 years |

## SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

# PRODUCT LIFE-CYCLE

## SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

| Product stage |           | Assembly stage |           | Use stage |     |             |        |             |               |                        | End of life stage     |                            |           |                  | Beyond the system boundaries |       |          |           |
|---------------|-----------|----------------|-----------|-----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|------------------|------------------------------|-------|----------|-----------|
| A1            | A2        | A3             | A4        | A5        | B1  | B2          | B3     | B4          | B5            | B6                     | B7                    | C1                         | C2        | C3               | C4                           | D     |          |           |
|               |           | x              | x         | x         | ND  | ND          | ND     | ND          | ND            | ND                     | ND                    | x                          | x         | x                | x                            | x     | x        |           |
| Raw materials | Transport | Manufacturing  | Transport | Assembly  | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Deconstruction/ demolition | Transport | Waste processing | Disposal                     | Reuse | Recovery | Recycling |
|               |           |                |           |           |     |             |        |             |               |                        |                       |                            |           |                  |                              |       |          |           |

Modules not declared = ND. Modules not relevant = MNR

## MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

The product is manufactured from a mix of virgin PVCu and recycled polypropylene consisting of post-consumer material sourced from various manufacturers and recycled sources. These materials are then processed via an injection moulding machine to create the housing and brick slip components, the brick slips are then coated with a granular sand affixed with a polyurethane adhesive before being assembled into the final product. This full assembly is packaged individually into a cardboard box with 168 boxes then stacked onto a wooden pallet secured with plastic shrink wrapping. Hydraulic oil and lubricants have been included as ancillary materials used within the manufacturing process. All electricity used in the manufacturing and polymer processing is procured through a renewable energy guarantee of origin via 100% wind power. Water used to cool the tooling during the manufacturing of the mouldings forms part of a sealed and closed loop and is recycled continuously, cooled via a chiller and fed back into the mould, the energy use for the chiller is fed by and allocated to the moulding machine.

Additional swift brick variants are available (GSWB and GSWB-DUAL-RD) these are manufactured in the same manner from the same materials, with only a variance in the part mass and box/pallet quantities from the main declared unit, individual calculations have been performed on each of these variants to determine the specific differences in A1-A3 GWP as shown in Annex A.

The use of green energy in manufacturing is demonstrated through contractual instruments (GOs, RECs, etc.), and its use is ensured throughout the validity period of this EPD.

## TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

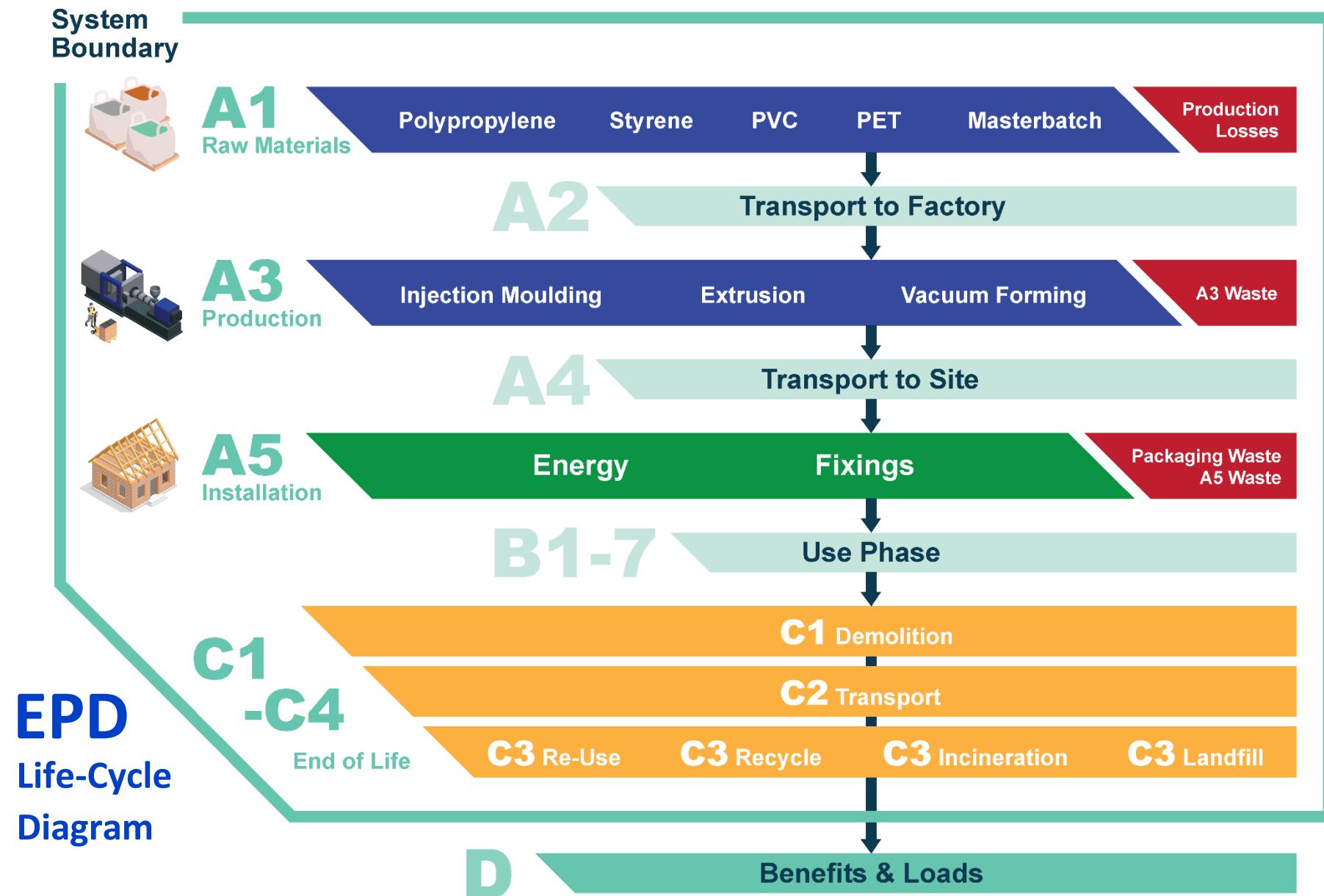
The transport distance is defined by the product category rules (PCR). The average transport distance from the manufacturing facility to the site was 242 kilometres. This was calculated using the distribution data for the sales to the top 10 merchant locations in each sales area during the sample timeframe, with a weighted ratio applied based on the percentage of overall sales by individual area. This could vary depending on the specific order. All vehicles used are to the Euro5 standard. Empty returns are not considered as it is assumed that the vehicle will be used to facilitate the transportation of different products from other sites. There are no losses associated with transportation as the product is packaged and strapped effectively. Volume capacity utilisation is assumed to be 1 for the nested packaging products.

The product is installed by a bricklayer during the laying of the higher courses of brickwork, ideally high in the gable end of the property. The product takes the place of two standard house bricks within the outer skin of masonry and is held in place by the compressive load and bedding in of the adjacent brickwork. The units are laid by hand with no tools required aside from a hand trowel used in the laying of the adjacent brickwork.

At the point of installation, the waste treatment of the packaging has been judged according to the averaged EU scenarios given in Ecoinvent datasets provided by OneClick; with the following percentages given for the recycling, incineration w. energy recovery and landfill of the cardboard (83%, 8%, 9%), PE film (40%, 37%, 23%) and wood pallet (30%, 30%, 40%) respectively.

## PRODUCT USE AND MAINTENANCE (B1-B7)

The use phase of this product has been analysed and found to be immaterial to the overall carbon impact of the declared unit, this is due to the product application. This assumption is in alignment with the product category rules (PCRs). Air, soil and water impacts during the use phase have not been studied.


Air, soil, and water impacts during the use phase have not been studied.

## PRODUCT END OF LIFE (C1-C4, D)

The end-of-life product is assumed to be sent back to the nearest waste processing plant following the demolition of the building, with a transport assumption of 250 km for recycling and 50 km to landfill by lorry. Using the pre-defined waste allocation attributes provided by the OneClickLCA software, the following output allocations have been utilised:

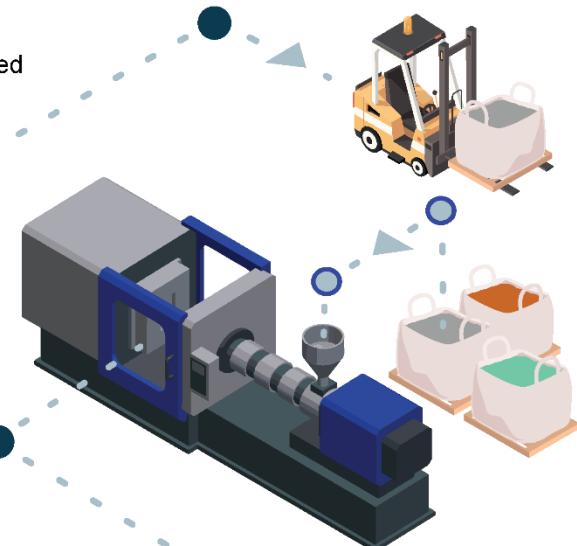
C2-C4 PP, Construction (Plastics Europe 2020) dataset, the division of this material for onward recycling, energy recovery or subsequent landfill has been allocated at 23% recycled, 50% energy recovery and 27% landfill.

C2-C4 PVC, Insulation (Plastics Europe 2020) dataset, the division of this material for onward recycling, energy recovery or subsequent landfill has been allocated at 34% recycled, 41% energy recovery and 25% landfill.



# A3 Manufacturing Process




## Step 1

Raw material is delivered to our factory via lorry or tanker.



## Step 2

The raw material is distributed to our injection moulding machines via silo or individual bags of pellets.



## Step 3

The raw material is fed into the machine's hopper where it melts within the barrel before being injected into the mould to form the part.



## Step 4

Once produced, the components are assembled together by hand or robot and packed into boxes. These boxes of product are stacked in multiples on pallets and stored on site.

# LIFE-CYCLE ASSESSMENT

## CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process that is more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

## VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

## ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are made according to the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

| Data type                      | Allocation                  |
|--------------------------------|-----------------------------|
| Raw materials                  | No allocation               |
| Packaging material             | No allocation               |
| Ancillary materials            | Allocated by mass or volume |
| Manufacturing energy and waste | Allocated by mass or volume |

## PRODUCT & MANUFACTURING SITES GROUPING

|                                      |                |
|--------------------------------------|----------------|
| Type of grouping                     | No grouping    |
| Grouping method                      | Not applicable |
| Variation in GWP-fossil for A1-A3, % | Not applicable |

This EPD is product and factory specific.

## ENVIRONMENTAL IMPACT DATA

The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

### CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

| Impact category                     | Unit                   | A1       | A2       | A3        | A1-A3     | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3        | C4        | D         |
|-------------------------------------|------------------------|----------|----------|-----------|-----------|----------|----------|----|----|----|----|----|----|----|----------|----------|-----------|-----------|-----------|
| GWP – total <sup>1)</sup>           | kg CO <sub>2</sub> e   | 4.58E-01 | 2.23E-02 | -2.24E-01 | 2.56E-01  | 3.33E-02 | 3.81E-01 | ND | 0.00E+00 | 1.00E-02 | 7.71E-01  | 2.65E-02  | -7.20E-01 |
| GWP – fossil                        | kg CO <sub>2</sub> e   | 4.43E-01 | 2.23E-02 | 1.42E-01  | 6.07E-01  | 3.33E-02 | 1.11E-02 | ND | 0.00E+00 | 1.00E-02 | 7.71E-01  | 2.65E-02  | -5.32E-01 |
| GWP – biogenic                      | kg CO <sub>2</sub> e   | 1.39E-02 | 4.82E-06 | -3.70E-01 | -3.56E-01 | 7.52E-06 | 3.70E-01 | ND | 0.00E+00 | 2.27E-06 | -2.45E-04 | -1.04E-05 | -1.88E-01 |
| GWP – LULUC                         | kg CO <sub>2</sub> e   | 5.42E-04 | 9.93E-06 | 4.49E-03  | 5.04E-03  | 1.44E-05 | 9.90E-06 | ND | 0.00E+00 | 4.47E-06 | 3.42E-05  | 1.50E-06  | 1.66E-04  |
| Ozone depletion pot.                | kg CFC-11e             | 1.37E-07 | 3.37E-10 | 3.81E-09  | 1.41E-07  | 5.55E-10 | 1.23E-10 | ND | 0.00E+00 | 1.49E-10 | 8.19E-10  | 8.37E-11  | -5.84E-08 |
| Acidification potential             | mol H <sup>+</sup> e   | 1.67E-03 | 7.55E-05 | 6.99E-04  | 2.44E-03  | 1.08E-04 | 4.39E-05 | ND | 0.00E+00 | 3.41E-05 | 2.23E-04  | 1.82E-05  | -2.42E-03 |
| EP-freshwater <sup>2)</sup>         | kg Pe                  | 1.93E-04 | 1.74E-06 | 7.12E-05  | 2.66E-04  | 2.61E-06 | 2.20E-06 | ND | 0.00E+00 | 7.79E-07 | 1.00E-05  | 2.65E-07  | -2.83E-04 |
| EP-marine                           | kg Ne                  | 3.54E-04 | 2.47E-05 | 3.06E-04  | 6.85E-04  | 3.48E-05 | 5.50E-05 | ND | 0.00E+00 | 1.12E-05 | 9.48E-05  | 4.35E-05  | -4.50E-04 |
| EP-terrestrial                      | mol Ne                 | 3.11E-03 | 2.69E-04 | 2.30E-03  | 5.68E-03  | 3.79E-04 | 1.65E-04 | ND | 0.00E+00 | 1.22E-04 | 8.13E-04  | 6.23E-05  | -4.47E-03 |
| POCP ("smog") <sup>3)</sup>         | kg NMVOCe              | 1.56E-03 | 1.11E-04 | 7.40E-04  | 2.41E-03  | 1.60E-04 | 5.67E-05 | ND | 0.00E+00 | 5.04E-05 | 2.30E-04  | 2.87E-05  | -2.46E-03 |
| ADP-minerals & metals <sup>4)</sup> | kg Sbe                 | 6.57E-06 | 6.46E-08 | 9.26E-07  | 7.56E-06  | 1.14E-07 | 3.82E-08 | ND | 0.00E+00 | 2.80E-08 | 2.78E-07  | 6.77E-09  | -3.99E-06 |
| ADP-fossil resources                | MJ                     | 1.16E+01 | 3.23E-01 | 2.25E+00  | 1.42E+01  | 4.76E-01 | 1.08E-01 | ND | 0.00E+00 | 1.45E-01 | 3.70E-01  | 7.28E-02  | -1.35E+01 |
| Water use <sup>5)</sup>             | m <sup>3</sup> e depr. | 2.54E-01 | 1.61E-03 | 8.76E-02  | 3.43E-01  | 2.49E-03 | 2.95E-03 | ND | 0.00E+00 | 7.18E-04 | 1.96E-01  | 3.20E-04  | -8.23E-02 |

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential;

5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

## ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

| Impact category                  | Unit          | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3       | C4       | D         |
|----------------------------------|---------------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| Particulate matter               | Incidence     | 1.26E-08 | 2.18E-09 | 8.35E-09 | 2.32E-08 | 2.80E-09 | 7.11E-10 | ND | 0.00E+00 | 1.00E-09 | 2.11E-09 | 3.50E-10 | -1.48E-08 |
| Ionizing radiation <sup>6)</sup> | kBq<br>I1235e | 9.35E-02 | 3.01E-04 | 1.50E-02 | 1.09E-01 | 5.90E-04 | 4.15E-04 | ND | 0.00E+00 | 1.27E-04 | 1.64E-03 | 5.26E-05 | -9.72E-02 |
| Ecotoxicity (freshwater)         | CTUe          | 1.08E+01 | 4.64E-02 | 1.14E+00 | 1.20E+01 | 7.38E-02 | 1.46E-01 | ND | 0.00E+00 | 2.06E-02 | 7.68E+00 | 6.88E-02 | -1.42E+00 |
| Human toxicity, cancer           | CTUh          | 6.61E-10 | 3.71E-12 | 2.44E-10 | 9.09E-10 | 5.74E-12 | 5.29E-12 | ND | 0.00E+00 | 1.66E-12 | 7.30E-11 | 1.47E-11 | -2.58E-10 |
| Human tox. non-cancer            | CTUh          | 5.25E-09 | 2.08E-10 | 1.45E-09 | 6.90E-09 | 3.01E-10 | 2.84E-10 | ND | 0.00E+00 | 9.41E-11 | 1.74E-09 | 2.08E-10 | -4.34E-09 |
| SQP <sup>7)</sup>                | -             | 1.74E+00 | 3.14E-01 | 2.13E+01 | 2.33E+01 | 3.76E-01 | 9.40E-02 | ND | 0.00E+00 | 1.46E-01 | 2.78E-01 | 9.60E-02 | -1.28E+01 |

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

## USE OF NATURAL RESOURCES

| Impact category                    | Unit           | A1        | A2       | A3       | A1-A3     | A4       | A5        | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3        | C4        | D         |
|------------------------------------|----------------|-----------|----------|----------|-----------|----------|-----------|----|----|----|----|----|----|----|----------|----------|-----------|-----------|-----------|
| Renew. PER as energy <sup>8)</sup> | MJ             | 9.36E-01  | 4.64E-03 | 2.66E+00 | 3.60E+00  | 8.37E-03 | -3.83E+00 | ND | 0.00E+00 | 2.00E-03 | 3.37E-02  | 8.34E-04  | -2.50E+00 |
| Renew. PER as material             | MJ             | 5.14E-11  | 0.00E+00 | 3.21E+00 | 3.21E+00  | 0.00E+00 | -3.21E+00 | ND | 0.00E+00 | 0.00E+00 | -3.78E-11 | -1.36E-11 | 1.80E+00  |
| Total use of renew. PER            | MJ             | 9.36E-01  | 4.64E-03 | 5.87E+00 | 6.81E+00  | 8.37E-03 | -7.04E+00 | ND | 0.00E+00 | 2.00E-03 | 3.37E-02  | 8.34E-04  | -7.07E-01 |
| Non-re. PER as energy              | MJ             | -1.26E+01 | 3.23E-01 | 2.05E+00 | -1.02E+01 | 4.76E-01 | 3.48E-02  | ND | 0.00E+00 | 1.45E-01 | -1.66E+01 | -6.27E+00 | -1.57E+01 |
| Non-re. PER as material            | MJ             | 2.28E+01  | 0.00E+00 | 2.05E-01 | 2.30E+01  | 0.00E+00 | -2.05E-01 | ND | 0.00E+00 | 0.00E+00 | -1.67E+01 | -6.08E+00 | 4.55E+00  |
| Total use of non-re. PER           | MJ             | 1.02E+01  | 3.23E-01 | 2.26E+00 | 1.28E+01  | 4.76E-01 | -1.70E-01 | ND | 0.00E+00 | 1.45E-01 | -3.33E+01 | -1.24E+01 | -1.12E+01 |
| Secondary materials                | kg             | 4.81E-01  | 1.40E-04 | 1.09E-01 | 5.90E-01  | 2.24E-04 | 1.07E-04  | ND | 0.00E+00 | 6.20E-05 | 7.03E-04  | 2.75E-05  | 2.27E-01  |
| Renew. secondary fuels             | MJ             | 2.89E-05  | 1.76E-06 | 7.32E-02 | 7.33E-02  | 2.66E-06 | 8.28E-07  | ND | 0.00E+00 | 7.87E-07 | 2.70E-05  | 2.91E-07  | -1.65E-05 |
| Non-ren. secondary fuels           | MJ             | 0.00E+00  | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00 | 0.00E+00  | ND | 0.00E+00 | 0.00E+00 | 0.00E+00  | 0.00E+00  | 0.00E+00  |
| Use of net fresh water             | m <sup>3</sup> | 8.73E-03  | 4.80E-05 | 2.10E-03 | 1.09E-02  | 7.22E-05 | -2.10E-04 | ND | 0.00E+00 | 2.15E-05 | 4.28E-03  | -5.92E-04 | -3.33E-03 |

8) PER = Primary energy resources.

**END OF LIFE – WASTE**

| Impact category     | Unit | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3       | C4       | D         |
|---------------------|------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| Hazardous waste     | kg   | 2.58E-02 | 5.45E-04 | 1.08E-02 | 3.71E-02 | 7.82E-04 | 1.06E-03 | ND | 0.00E+00 | 2.46E-04 | 4.80E-02 | 1.54E-04 | -2.55E-02 |
| Non-hazardous waste | kg   | 2.03E+00 | 1.03E-02 | 2.71E-01 | 2.31E+00 | 1.61E-02 | 4.01E-01 | ND | 0.00E+00 | 4.56E-03 | 4.63E-01 | 8.00E-01 | -6.43E+00 |
| Radioactive waste   | kg   | 2.42E-05 | 7.39E-08 | 3.84E-06 | 2.81E-05 | 1.46E-07 | 1.05E-07 | ND | 0.00E+00 | 3.12E-08 | 4.20E-07 | 1.29E-08 | -2.50E-05 |

**END OF LIFE – OUTPUT FLOWS**

| Impact category               | Unit | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3       | C4       | D        |
|-------------------------------|------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|----------|
| Components for re-use         | kg   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ND | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Materials for recycling       | kg   | 7.78E-15 | 0.00E+00 | 0.00E+00 | 7.78E-15 | 0.00E+00 | 1.34E-01 | ND | 0.00E+00 | 0.00E+00 | 1.69E-01 | 0.00E+00 | 0.00E+00 |
| Materials for energy rec      | kg   | 4.07E-23 | 0.00E+00 | 0.00E+00 | 4.07E-23 | 0.00E+00 | 0.00E+00 | ND | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| Exported energy               | MJ   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.91E-01 | ND | 0.00E+00 | 0.00E+00 | 5.50E-01 | 0.00E+00 | 0.00E+00 |
| Exported energy – Electricity | MJ   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.21E-01 | ND | 0.00E+00 | 0.00E+00 | 2.30E-01 | 0.00E+00 | 0.00E+00 |
| Exported energy – Heat        | MJ   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.70E-01 | ND | 0.00E+00 | 0.00E+00 | 3.20E-01 | 0.00E+00 | 0.00E+00 |

**ENVIRONMENTAL IMPACTS – EN 15804+A1, CML**

| Impact category      | Unit                               | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3       | C4       | D         |
|----------------------|------------------------------------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| Global Warming Pot.  | kg CO <sub>2</sub> e               | 4.51E-01 | 2.22E-02 | 1.48E-01 | 6.21E-01 | 3.31E-02 | 2.47E-02 | ND | 0.00E+00 | 9.97E-03 | 7.71E-01 | 2.57E-02 | -5.19E-01 |
| Ozone depletion Pot. | kg CFC- <sub>11</sub> e            | 2.16E-07 | 2.69E-10 | 3.11E-09 | 2.20E-07 | 4.42E-10 | 9.94E-11 | ND | 0.00E+00 | 1.19E-10 | 7.64E-10 | 6.68E-11 | -5.57E-08 |
| Acidification        | kg SO <sub>2</sub> e               | 1.38E-03 | 5.77E-05 | 5.15E-04 | 1.95E-03 | 8.23E-05 | 3.29E-05 | ND | 0.00E+00 | 2.61E-05 | 1.68E-04 | 1.40E-05 | -2.01E-03 |
| Eutrophication       | kg PO <sub>4</sub> <sup>3-</sup> e | 6.68E-04 | 1.41E-05 | 1.88E-03 | 2.56E-03 | 2.06E-05 | 2.50E-05 | ND | 0.00E+00 | 6.36E-06 | 4.17E-05 | 6.68E-06 | -4.04E-04 |
| POCP ("smog")        | kg C <sub>2</sub> H <sub>4</sub> e | 1.13E-04 | 5.16E-06 | 6.05E-05 | 1.79E-04 | 7.51E-06 | 5.83E-06 | ND | 0.00E+00 | 2.33E-06 | 1.44E-05 | 3.92E-06 | -1.67E-04 |
| ADP-elements         | kg Sbe                             | 5.32E-06 | 6.30E-08 | 9.21E-07 | 6.30E-06 | 1.11E-07 | 3.72E-08 | ND | 0.00E+00 | 2.73E-08 | 2.10E-07 | 6.39E-09 | -3.56E-06 |
| ADP-fossil           | MJ                                 | 9.98E+00 | 3.18E-01 | 1.98E+00 | 1.23E+01 | 4.66E-01 | 1.01E-01 | ND | 0.00E+00 | 1.43E-01 | 3.43E-01 | 7.20E-02 | -1.18E+01 |

## ADDITIONAL INDICATOR – GWP-GHG

| Impact category       | Unit                 | A1       | A2       | A3       | A1-A3    | A4       | A5       | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1       | C2       | C3       | C4       | D         |
|-----------------------|----------------------|----------|----------|----------|----------|----------|----------|----|----|----|----|----|----|----|----------|----------|----------|----------|-----------|
| GWP-GHG <sup>9)</sup> | kg CO <sub>2</sub> e | 4.44E-01 | 2.23E-02 | 1.46E-01 | 6.12E-01 | 3.33E-02 | 1.11E-02 | ND | 0.00E+00 | 1.00E-02 | 7.71E-01 | 2.65E-02 | -5.32E-01 |

9) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH<sub>4</sub> fossil, CH<sub>4</sub> biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO<sub>2</sub> is set to zero.

## LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator for EPD Hub V3 and EPD System Verification v3.2.3. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1/3.11 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1/3.11 environmental data sources follow the methodology 'allocation, Cut-off, EN 15804+A2'.

## SCENARIO DOCUMENTATION

### DATA SOURCES

#### Manufacturing energy scenario documentation

1. Electricity production, wind, 1-3MW turbine, offshore, United Kingdom, Ecoinvent, 0.0168 kgCO2e/kWh

#### Transport scenario documentation - A4 (Transport resources)

1. Market for transport, freight, lorry >32 metric ton, EURO5, 217 km
2. Market for transport, freight, lorry 3.5-7.5 metric ton, EURO5, 25 km

#### Transport scenario documentation A4

| Scenario parameter                              | Value    |
|-------------------------------------------------|----------|
| Capacity utilization (including empty return) % | 50       |
| Bulk density of transported products            | 0.00E+00 |
| Volume capacity utilization factor              | 1        |

#### Installation scenario documentation - A5 (Installation waste)

1. Treatment of waste paperboard, unsorted, sorting, Ecoinvent, Materials for recycling, **0.085 kg** (83%)
2. Treatment of waste packaging paper, municipal incineration, Ecoinvent, **0.0082 kg** (8%)
3. Treatment of waste packaging paper, sanitary landfill, Ecoinvent, **0.0093 kg** (9%)
4. Exported Energy: Electricity, Ecoinvent, 0.016 MJ
5. Exported Energy: Electricity, Ecoinvent, 0.0045 MJ
6. Exported Energy: Electricity, Ecoinvent, 0.1 MJ
7. Exported Energy: Thermal, Ecoinvent, 0.024 MJ

8. Exported Energy: Thermal, Ecoinvent, 0.0062 MJ
9. Exported Energy: Thermal, Ecoinvent, 0.14 MJ
10. Treatment of waste polyethylene, for recycling, unsorted, sorting, Ecoinvent, Materials for recycling, **7.2E-4 kg** (40%)
11. Treatment of waste polyethylene, municipal incineration, Ecoinvent, **6.7E-4 kg** (37%)
12. Treatment of waste polyethylene, sanitary landfill, Ecoinvent, **4.1E-4 kg** (23%)
13. Treatment of waste wood, post-consumer, sorting and shredding, Ecoinvent, Materials for recycling, **0.048 kg** (32%)
14. Treatment of waste wood, untreated, municipal incineration, Ecoinvent, **0.045 kg** (30%)
15. Treatment of waste wood, untreated, sanitary landfill, Ecoinvent, **0.057 kg** (38%)

#### End of life scenario documentation - C1-C4 (Data source)

1. Treatment of waste PVC, for recycling, unsorted, sorting, Ecoinvent, Materials for recycling, **0.056 kg** (34% of 0.164 kg)
2. Treatment of waste PP, for recycling, unsorted, sorting, Ecoinvent, Materials for recycling, **0.1 kg** (23% of 0.452 kg)
3. Treatment of waste PVC, municipal incineration, Ecoinvent, **0.067 kg** (41% of 0.164 kg)
4. Exported Energy: Electricity, Ecoinvent, 0.23 MJ
5. Exported Energy: Electricity, Ecoinvent, 1.1797 MJ
6. Exported Energy: Thermal, Ecoinvent, 0.32 MJ
7. Exported Energy: Thermal, Ecoinvent, 1.62 MJ
8. Treatment of waste PVC, sanitary landfill, Ecoinvent, **0.041 kg** (25% of 0.164 kg)
9. Treatment of waste PP, sanitary landfill, Ecoinvent, **0.12 kg** (27% of 0.452 kg)
10. Treatment of waste PP, municipal incineration, Ecoinvent, **0.23 kg** (50% of 0.452 kg)

| Scenario information                     | Value                                                        |
|------------------------------------------|--------------------------------------------------------------|
| Scenario assumptions e.g. transportation | Transported 250 km (recycling) and 50 km (landfill) by lorry |

## THIRD-PARTY VERIFICATION STATEMENT

EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance is filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub cannot identify any unjustified deviations from the PCR and EN 15804+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.

### Verified tools

Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Dusan Vukovic, as authorized verifier acting for EPD HUB Limited

12.12.2025



**ANNEX A**
**PRODUCT RANGE**

| Product Code        | Product Description                      | Mass (kg)    | GWP A1-A3 Fossil (kg CO <sub>2</sub> e) | GWP A1-A3 Total (kg CO <sub>2</sub> e) |
|---------------------|------------------------------------------|--------------|-----------------------------------------|----------------------------------------|
| <b>GSWB-DUAL</b>    | <b>Dual Swift Brick</b>                  | <b>0.632</b> | <b>0.607</b>                            | <b>0.256</b>                           |
| <b>GSWB-DUAL-RD</b> | <b>Dual Swift Brick<br/>Render Slips</b> | <b>0.547</b> | <b>0.504</b>                            | <b>0.069</b>                           |
| <b>GSWB</b>         | <b>Swift Brick<br/>Single Brick</b>      | <b>0.741</b> | <b>1.290</b>                            | <b>0.705</b>                           |

**PRODUCT VARIANTS** (as per EN 15804+A2)

Primary data set covered in this EPD is taken from the characteristics of the GSWB-DUAL Dual Swift Nesting Brick. Additional swift brick variants are available (GSWB and GSWB-DUAL-RD) these are manufactured in the same manner from the same materials, with only a variance in the part mass and box/pallet quantities from the main declared unit, individual calculations have been performed on each of these variants to determine the specific differences in A1-A3 GWP as shown above.

